Non-parametric hypersurfaces with bounded curvatures
نویسندگان
چکیده
منابع مشابه
Convex hypersurfaces of prescribed curvatures
For a smooth strictly convex closed hypersurface Σ in R, the Gauss map n : Σ → S is a diffeomorphism. A fundamental question in classical differential geometry concerns how much one can recover through the inverse Gauss map when some information is prescribed on S ([27]). This question has attracted much attention for more than a hundred years. The most notable example is probably the Minkowski...
متن کاملMinimal Hypersurfaces with Bounded Index
We prove a structural theorem that provides a precise local picture of how a sequence of closed embedded minimal hypersurfaces with uniformly bounded index (and volume if the ambient dimension is greater than three) in a Riemannian manifold (M, g), 3 ≤ n ≤ 7, can degenerate. Loosely speaking, our results show that embedded minimal hypersurfaces with bounded index behave qualitatively like embed...
متن کاملPrincipal Curvatures of Isoparametric Hypersurfaces in Cp
Let M be an isoparametric hypersurface in CPn, and M the inverse image of M under the Hopf map. By using the relationship between the eigenvalues of the shape operators of M and M , we prove that M is homogeneous if and only if either g or l is constant, where g is the number of distinct principal curvatures of M and l is the number of non-horizontal eigenspaces of the shape operator on M .
متن کاملRigidity of minimal hypersurfaces of spheres with two principal curvatures
Let ν be a unit normal vector field along M . Notice that ν : M −→ S satisfies that 〈ν(m),m〉 = 0. For any tangent vector v ∈ TmM , m ∈ M , the shape operator A is given by A(v) = −∇̄vν, where ∇̄ denotes the Levi Civita connection in S. For every m ∈ M , A(m) defines a linear symmetric transformation from TmM to TmM ; the eigenvalues of this transformation are known as the principal curvatures of ...
متن کاملCompact embedded hypersurfaces with constant higher order anisotropic mean curvatures
Given a positive function F on S which satisfies a convexity condition, for 1 ≤ r ≤ n, we define the r-th anisotropic mean curvature function H r for hypersurfaces in R which is a generalization of the usual r-th mean curvature function. We prove that a compact embedded hypersurface without boundary in R with H r = constant is the Wulff shape, up to translations and homotheties. In case r = 1, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Geometry
سال: 1968
ISSN: 0022-040X
DOI: 10.4310/jdg/1214428440